\(\int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx\) [873]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 131 \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\frac {g \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} e}+\frac {(e f-d g) \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{e \sqrt {c d^2-b d e+a e^2}} \]

[Out]

g*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/e/c^(1/2)+(-d*g+e*f)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*
x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/e/(a*e^2-b*d*e+c*d^2)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {857, 635, 212, 738} \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\frac {(e f-d g) \text {arctanh}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{e \sqrt {a e^2-b d e+c d^2}}+\frac {g \text {arctanh}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} e} \]

[In]

Int[(f + g*x)/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(g*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*e) + ((e*f - d*g)*ArcTanh[(b*d - 2*a*e + (
2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(e*Sqrt[c*d^2 - b*d*e + a*e^2])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {g \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{e}+\frac {(e f-d g) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{e} \\ & = \frac {(2 g) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{e}-\frac {(2 (e f-d g)) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{e} \\ & = \frac {g \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} e}+\frac {(e f-d g) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{e \sqrt {c d^2-b d e+a e^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.08 \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=-\frac {\frac {2 \sqrt {-c d^2+b d e-a e^2} (-e f+d g) \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{c d^2+e (-b d+a e)}+\frac {g \log \left (e \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )}{\sqrt {c}}}{e} \]

[In]

Integrate[(f + g*x)/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

-(((2*Sqrt[-(c*d^2) + b*d*e - a*e^2]*(-(e*f) + d*g)*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + x*(b + c*x)])/Sqrt[
-(c*d^2) + e*(b*d - a*e)]])/(c*d^2 + e*(-(b*d) + a*e)) + (g*Log[e*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)]
)])/Sqrt[c])/e)

Maple [A] (verified)

Time = 0.71 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.52

method result size
default \(\frac {g \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{e \sqrt {c}}-\frac {\left (-d g +e f \right ) \ln \left (\frac {\frac {2 e^{2} a -2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}\) \(199\)

[In]

int((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

g/e*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-(-d*g+e*f)/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(
a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d
/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (115) = 230\).

Time = 21.85 (sec) , antiderivative size = 1071, normalized size of antiderivative = 8.18 \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\left [\frac {{\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {c} g \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - \sqrt {c d^{2} - b d e + a e^{2}} {\left (c e f - c d g\right )} \log \left (\frac {8 \, a b d e - 8 \, a^{2} e^{2} - {\left (b^{2} + 4 \, a c\right )} d^{2} - {\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )} - 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, \frac {{\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {c} g \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) + 2 \, \sqrt {-c d^{2} + b d e - a e^{2}} {\left (c e f - c d g\right )} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )}}{2 \, {\left (a c d^{2} - a b d e + a^{2} e^{2} + {\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x\right )}}\right )}{2 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, -\frac {2 \, {\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c} g \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + \sqrt {c d^{2} - b d e + a e^{2}} {\left (c e f - c d g\right )} \log \left (\frac {8 \, a b d e - 8 \, a^{2} e^{2} - {\left (b^{2} + 4 \, a c\right )} d^{2} - {\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )} - 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right )}{2 \, {\left (c^{2} d^{2} e - b c d e^{2} + a c e^{3}\right )}}, -\frac {{\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c} g \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) - \sqrt {-c d^{2} + b d e - a e^{2}} {\left (c e f - c d g\right )} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )}}{2 \, {\left (a c d^{2} - a b d e + a^{2} e^{2} + {\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x\right )}}\right )}{c^{2} d^{2} e - b c d e^{2} + a c e^{3}}\right ] \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((c*d^2 - b*d*e + a*e^2)*sqrt(c)*g*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*s
qrt(c) - 4*a*c) - sqrt(c*d^2 - b*d*e + a*e^2)*(c*e*f - c*d*g)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 -
 (8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d -
2*a*e + (2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)))/(c^2
*d^2*e - b*c*d*e^2 + a*c*e^3), 1/2*((c*d^2 - b*d*e + a*e^2)*sqrt(c)*g*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(
c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + 2*sqrt(-c*d^2 + b*d*e - a*e^2)*(c*e*f - c*d*g)*arctan(-1/2*sqr
t(-c*d^2 + b*d*e - a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 +
 (c^2*d^2 - b*c*d*e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3), -1/
2*(2*(c*d^2 - b*d*e + a*e^2)*sqrt(-c)*g*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x
 + a*c)) + sqrt(c*d^2 - b*d*e + a*e^2)*(c*e*f - c*d*g)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 + 4*a*c)*d^2 - (8*c^2
*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e +
 (2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x + d^2)))/(c^2*d^2*e
- b*c*d*e^2 + a*c*e^3), -((c*d^2 - b*d*e + a*e^2)*sqrt(-c)*g*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt
(-c)/(c^2*x^2 + b*c*x + a*c)) - sqrt(-c*d^2 + b*d*e - a*e^2)*(c*e*f - c*d*g)*arctan(-1/2*sqrt(-c*d^2 + b*d*e -
 a*e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 + (c^2*d^2 - b*c*d*
e + a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)))/(c^2*d^2*e - b*c*d*e^2 + a*c*e^3)]

Sympy [F]

\[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\int \frac {f + g x}{\left (d + e x\right ) \sqrt {a + b x + c x^{2}}}\, dx \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral((f + g*x)/((d + e*x)*sqrt(a + b*x + c*x**2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume((b/e-(2*c*d)/e^2)^2>0)', see `
assume?` for

Giac [F(-2)]

Exception generated. \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((g*x+f)/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \frac {f+g x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx=\int \frac {f+g\,x}{\left (d+e\,x\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

[In]

int((f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int((f + g*x)/((d + e*x)*(a + b*x + c*x^2)^(1/2)), x)